需要の交差弾力性 経済経済学Macroeconomics ##需要の交差弾力性とは何ですか? 需要の交差弾力性は、ある財の価格が変化したときに、ある財の需要量の応答性を測定する経済概念です。交差弾力性とも呼ばれるこの測定値は、一方の財の需要量の変化率を、もう一方の財の価格の変化率で割って計算されます。 ##需要式の交差弾力性 <mtable rowspacing = "0.24999999999999992em "columnalign =" right left "columnspacing =" 0em "> <mstyle scriptlevel =" 0 "displaystyle =" true "> </ mrow> </ mstyle> </ mtd> </ mrow> E </ mi> x </ mi> y < / mi> </ mrow> </ msub> = </ mo> Xの量の変化率Yの価格の変化率</ mfrac> </ mrow> </ mstyle> </ mtd> </ mtr> </ mrow> </ mstyle> </ mtd> </ mrow> E </ mi> x < / mi> y </ mi> </ mrow> </ msub> </ mphantom> = </ mo> <mimathvariant="normal">Δ Q </ mi> x </ mi> </ msub> </ mstyle> Q </ mi> x </ mi> </ msub> </ msty le> </ mfrac> <mimathvariant="normal">Δ P </ mi> y </ mi> </ msub> </ mstyle> P </ mi> y </ mi> </ msub> </ mstyle> </ mfrac> </ mfrac> </ mrow> </ mstyle> </ mtd> </ mtr> </ mrow> </ mstyle> </ mtd> </ mrow> E </ mi> x </ mi> y </ mi> </ mrow> </ msub> </ mphantom> = </ mo> Δ Q </ mi> x </ mi> </ msub> </ mrow> Q </ mi> x </ mi> </ msub> × P </ mi> y </ mi> </ msub> < mimathvariant="normal">Δ P </ mi> y </ mi> </ msub> </ mrow> </ mfrac> </ mrow> </ mstyle > </ mtd> </ mtr> </ mrow> </ mstyle> </ mtd> </ mrow> E </ mi> x </ mi> y </ mi> </ mrow> < / msub> </ mphantom> = </ mo> <mimathvariant="normal">Δ Q </ mi> x < / mi> </ msub> </ mrow> <mimathvariant="normal">Δ P </ mi> y </ mi> </ msub> </ mrow> × P </ mi> y </ mi> </ msub> Q < / mi> x </ mi> </ msub> </ mfrac> </ mrow> </ mstyle> </ mtd> </ mtr> </ mrow> </ mstyle> </ mtd> </ mrow> 場所:</ mtext> </ mrow> </ mstyle> </ mtd> </ mtr> <mstyle scriptlevel =" 0 "displaystyle =" true "> </ mrow > </ mstyle> </ mtd> </ mrow> Q </ mi> x </ mi> </ msub> = 良いXの量</ mrow> </ mstyle> </ mtd> </ mtr> < mstyle scriptlevel = "0" displaystyle = "true"> </ mrow> </ mstyle> </ mtd> < / mrow> P </ mi> y </ mi> </ msub> = 価格Y </ mtext> </ mrow> </ mstyle> </ mtd> </ mtr> </ mrow> </ mstyle > </ mtd> </ mrow> <mimathvariant="normal">Δ = </ mo>変更</ mrow> </ mstyle> </ mtd> </ mtr> </ mtable> \ begin &amp; E_ = \ frac {\ text{Xの数量の変化率}}{\ text{Yの価格の変化率}}\&amp; \ phantom {E_ } = \ frac {\ frac {\ displaystyle \ Delta Q_x} {\ displaystyle Q_x}} {\ frac {\ displaystyle \ Delta P_y} {\ displaystyle P_y}} \&amp; \ phantom {E_ } = \ frac {\ Delta Q_x} \ times \ frac {\ Delta P_y} \&amp; \ phantom {E_ } = \ frac {\ Delta Q_x} {\ Delta P_y} \ times \ frac \&amp ; \ textbf {where:} \&amp; Q_x = \ text \&amp; P_y = \ text \&amp; \ Delta = \ text \ \ end </ annotation> </ semantics> </ math> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span > </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> < span class = "vlist" style = "height:8.915586em;"> </ span> </ span> </ span> </ span> </ span> <span class =" pstrut "style =" height:4.26554em; "> </ span> </ span> <span class =" mord mathnormal "style =" margin-right:0.05764em; "> E </ span> < span class = "vlist-r"> <span class =" pstrut "style =" height:2.7em; "> </ span> x </ span> y </ span> </ span> </ span> </ span > </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span > = </ span> </ span> </ span> <span class =" vlist "style =" height :1.3714399999999998em; "> <span class =" pstrut "style =" height:3em; "> </ span> <spanclass ="mord">Yの価格の変化率</ span> </ span> </ span> </ span> </ span> </ span> <span class =" pstrut "style =" height:3em; "> </ span> <spanclass="mord">Xの量の変化率</ span> </ span> </ span> </ span> </ span> </ span> </ span> < / span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> <span class =" pstrut "style =" height:4.26554em; "> </ span> </ span> <span class =" mord "style =" color:transparent; "> <span class =" mord mathnormal "style =" margin-right:0.05764em; color:transparent; "> E </ span> <span class =" pstrut "style =" height:2.7em; "> </ span> <span class =" sizereset-size6 size3 mtight "style =" color:transparent; "> <span class =" mord mtight "style =" color:transparent; "> <span class =" mord mathnormal mtight "style =" color:transparent; "> x </ span > y </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> = </ span> </ span> </ span> </ span> </ span> <span class =" vlist "style =" height:1.279438em; "> </ span> <span class =" mord mathnormal "style =" margin-right:0.13889em; "> P </ span> < span class = "vlist-r"> <span class =" pstrut "style =" height:2.7em; "> </ span> <span class =" mord mathnormal mtight "style =" margin-right:0.03588em; "> y </ span> </ span> </ span> </ span> </ span> </ span> <span class =" vlist "style =" height:0.286108em; "> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> Δ<spanclass =" mord sizing reset-size3 size6 "> <span class =" mord mathnormal "style =" margin-right:0.13889 em; "> P </ span> <span class =" vlist "style =" height:0.15139200000000003em; "> <span class =" pstrut "style =" height:2.7em; "> </ span> y </ span> </ span> < / span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span > </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> </ span> < / span> </ span> </ span> </ span> <span class =" pstrut "style =" height:3.279438em; "> </ span> </ span> <span class =" vlist "style =" height:1.18777em; "> <span class =" pstrut "style = "height:3em;"> </ span>