Programowanie liczb całkowitych zero jeden
Co to jest programowanie liczb całkowitych zero-jedynkowych?
Programowanie liczb całkowitych zero-jedynkowych (które można również zapisać jako programowanie liczb całkowitych „0-1”) to matematyczna metoda użycia szeregu funkcji binarnych; w szczególności odpowiedzi tak („1”) i nie („0”), aby uzyskać rozwiązanie, gdy istnieją dwie wzajemnie wykluczające się opcje.
W świecie finansów programowanie na liczbach całkowitych zero-jedynek jest często używane do dostarczania odpowiedzi na problemy z racjonalizacją kapitału,. a także do optymalizacji zwrotu z inwestycji i pomocy w planowaniu, produkcji, transporcie i innych kwestiach.
Zrozumienie programowania liczb całkowitych zero-jedynkowych
Programowanie liczb całkowitych to gałąź programowania matematycznego lub optymalizacji, która polega na tworzeniu równań w celu rozwiązywania problemów. Termin „programowanie matematyczne” wiąże się z tym, że celem rozwiązywania różnych problemów jest wybór programów działania. Przypisanie prostej wartości tak/nie może być potężnym sposobem ustanowienia liniowych ram rozwiązywania problemów w celu identyfikacji nieefektywności.
Zasadniczo najbardziej podstawowe instrukcje wykonywane przez komputer to kody binarne, składające się tylko z jedynek i zer. Kody te są bezpośrednio przekładane na stany „włączenia” i „wyłączenia” elektryczności przepływającej przez fizyczne obwody komputera. W istocie te proste kody stanowią podstawę „języka maszynowego”, najbardziej podstawowej odmiany języków programowania. Te pozycje włączenia i wyłączenia można również interpretować jako przypisanie „tak” lub „nie” do funkcji logicznej.
Oczywiście żaden człowiek nie byłby w stanie skonstruować nowoczesnych programów programowych poprzez jawne programowanie zer i jedynek. Zamiast tego programiści muszą polegać na różnych warstwach abstrakcji, które pozwalają im wyrażać swoje polecenia w formacie, który jest bardziej intuicyjny dla ludzi. W szczególności współcześni programiści wydają polecenia w tak zwanych „językach wysokiego poziomu”, które wykorzystują intuicyjną składnię, taką jak całe angielskie słowa i zdania, a także operatory logiczne, takie jak „And”, „Or” i „Else”, które są znajomy w codziennym użytkowaniu.
Ostatecznie jednak te polecenia wysokiego poziomu muszą zostać przetłumaczone na język maszynowy. Zamiast robić to ręcznie, programiści polegają na językach asemblerowych, których celem jest automatyczne tłumaczenie między tymi językami wysokiego i niskiego poziomu.
Rzeczywisty przykład programowania zero-jedynkowego całkowitoliczbowego
Prostym przykładem wykorzystania programowania liczb całkowitych zero-jedynkowych w racjonalizacji kapitału byłoby określenie liczby projektów rozwoju produktu, które firma może zrealizować w określonym terminie lub w określonym budżecie. Na przykład, wielu zmiennym dla każdego projektu można przypisać wartości, które ostatecznie skutkują binarną decyzją 1 (tak) lub 0 (nie) o tym, czy uwzględnić projekt w budżecie. Może to być pomocne dla firm, które nie są pewne konkretnej decyzji biznesowej i szukają prostego sposobu oceny możliwości.
##Przegląd najważniejszych wydarzeń
Programowanie liczb całkowitych zero-jedynkowych opiera się na wykluczających się decyzjach tak (1) i nie (0) w celu znalezienia rozwiązań problemów logicznych.
Ten rodzaj programowania może być przydatny dla firm podejmujących decyzje w kwestiach takich jak w co inwestować lub który z dwóch proponowanych produktów jest najłatwiejszy do wyprodukowania.
W problemach zero-jedynkowych liczb całkowitych każda zmienna jest reprezentowana tylko przez 0 ('nie') lub 1 ('tak') i może reprezentować wybór lub odrzucenie opcji, włączanie lub wyłączanie przełączników elektronicznych lub proste tak lub brak odpowiedzi w różnych innych aplikacjach.