Investor's wiki

역상관

역상관

์—ญ์ƒ๊ด€๊ด€๊ณ„๋ž€ ๋ฌด์—‡์ž…๋‹ˆ๊นŒ?

์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ผ๊ณ ๋„ ํ•˜๋Š” ์—ญ์ƒ๊ด€์€ ๋‘ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ ๋ฐ˜๋Œ€ ๊ด€๊ณ„๋กœ, ํ•œ ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ๋†’์„ ๋•Œ ๋‹ค๋ฅธ ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ๋‚ฎ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์˜ˆ๋ฅผ ๋“ค์–ด ๋ณ€์ˆ˜ A์™€ B์˜ ๊ฒฝ์šฐ A์˜ ๊ฐ’์ด ๋†’์œผ๋ฉด B์˜ ๊ฐ’์ด ๋‚ฎ๊ณ  A์˜ ๊ฐ’์ด ๋‚ฎ์œผ๋ฉด B์˜ ๊ฐ’์ด ๋†’์Šต๋‹ˆ๋‹ค. ํ†ต๊ณ„ ์šฉ์–ด์—์„œ ์—ญ ์ƒ๊ด€์€ ์ข…์ข… -1๊ณผ 0 ์‚ฌ์ด์˜ ๊ฐ’์„ ๊ฐ–๋Š” ์ƒ๊ด€ ๊ณ„์ˆ˜ "r"๋กœ ํ‘œ์‹œ๋˜๋ฉฐ r = -1์€ ์™„์ „ํ•œ ์—ญ ์ƒ๊ด€์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

์—ญ์ƒ๊ด€ ๊ทธ๋ž˜ํ”„ ๊ทธ๋ฆฌ๊ธฐ

์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด x ๋ฐ y์ถ•์˜ ๊ทธ๋ž˜ํ”„์— ๋‘ ์„ธํŠธ์˜ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋ฅผ ํ‘œ์‹œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๊ฒƒ์„ ์‚ฐํฌ๋„๋ผ๊ณ  ํ•˜๋ฉฐ ์–‘ ๋˜๋Š” ์Œ์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ํ™•์ธํ•˜๋Š” ์‹œ๊ฐ์  ๋ฐฉ๋ฒ•์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์•„๋ž˜ ๊ทธ๋ž˜ํ”„๋Š” ๊ทธ๋ž˜ํ”„์— ๊ทธ๋ ค์ง„ ๋‘ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ์„ธํŠธ ๊ฐ„์˜ ๊ฐ•ํ•œ ์—ญ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์—ญ์ƒ๊ด€ ๊ณ„์‚ฐ์˜ ์˜ˆ

์ƒ๊ด€ ๊ด€๊ณ„ ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ์ˆ˜์น˜ ๊ฒฐ๊ณผ์— ๋„๋‹ฌํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ ์ค‘ ๊ฐ€์žฅ ์ผ๋ฐ˜์ ์ธ ๊ฒƒ์€ Pearson์˜ r๋กœ ์•Œ๋ ค์ ธ ์žˆ์Šต๋‹ˆ๋‹ค. r์ด 0๋ณด๋‹ค ์ž‘์œผ๋ฉด ์—ญ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋‹ค์Œ์€ Pearson์˜ r์— ๋Œ€ํ•œ ์‚ฐ์ˆ  ๊ณ„์‚ฐ ์˜ˆ์ด๋ฉฐ, ๊ฒฐ๊ณผ๋Š” ๋‘ ๋ณ€์ˆ˜ ๊ฐ„์˜ ์—ญ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

๋ถ„์„๊ฐ€๊ฐ€ ๋‘ ๋ณ€์ˆ˜์— ๋Œ€ํ•œ 7๊ฐœ์˜ ๊ด€์ธก์น˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ X์™€ Y ์‚ฌ์ด์˜ ์ƒ๊ด€ ์ •๋„๋ฅผ ๊ณ„์‚ฐํ•ด์•ผ ํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค.

  • X: 55, 37, 100, 40, 23, 66, 88

  • Y: 91, 60, 70, 83, 75, 76, 30

์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ๋ฐ์—๋Š” ์„ธ ๋‹จ๊ณ„๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ชจ๋“  X ๊ฐ’์„ ๋”ํ•˜์—ฌ SUM(X)์„ ์ฐพ๊ณ  ๋ชจ๋“  Y ๊ฐ’์„ ๋”ํ•˜์—ฌ SUM(Y)๋ฅผ ์ฐพ์€ ๋‹ค์Œ ๊ฐ X ๊ฐ’์— ํ•ด๋‹น Y ๊ฐ’์„ ๊ณฑํ•˜๊ณ  ํ•ฉํ•˜์—ฌ SUM(X, Y)๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค.

<์˜๋ฏธ๋ก >SUM(X)<mstyle scriptlevel="0" ๋””์Šคํ”Œ๋ ˆ์ด ์Šคํƒ€์ผ ="true">=55+37 +100+40+23+< /mo>66+88< mstyle scriptlevel="0" displaystyle="true">< /mrow>=409\begin \text(X) &= 55 + 37 + 100 + 40 + 23 + 66 + 88 \ &= 409 \ \endโ€‹</ ์ŠคํŒฌ>

<์˜๋ฏธ๋ก >SUM(Y)<mstyle scriptlevel="0" ๋””์Šคํ”Œ๋ ˆ์ด ์Šคํƒ€์ผ ="true">=91+60 +70+83+75+< /mo>76+30< mstyle scriptlevel="0" displaystyle="true">< /mrow>=485\begin \text(Y) &= 91 + 60 + 70 + 83 + 75 + 76 + 30 \ &= 485 \ \end<์ŠคํŒฌ ํด๋ผ ss="katex-html" aria-hidden="true"><span class="strut" ์Šคํƒ€์ผ="๋†’์ด:3.0000000000000004em;์ˆ˜์ง ์ •๋ ฌ:-1.2500000000000002em;"></ ์ŠคํŒฌ><span class="vlist" ์Šคํƒ€์ผ="๋†’์ด:1.7500000000000002em;"><span class="pstrut" ์Šคํƒ€์ผ="๋†’์ด:3em;">< /span>SUM( Y)<span ์Šคํƒ€์ผ= "์ƒ๋‹จ:-2.41em;">< span class="vlist-s">โ€‹</ ์ŠคํŒฌ><span class="vlist" ์Šคํƒ€์ผ le="๋†’์ด:1.7500000000000002em;">=< span class="mspace" style="margin-right:0.2777777777777778em;">91+60+ 70+ 83<์ŠคํŒฌ ํด๋ž˜์Šค ="mbin">+75+76+< /span>30 =485โ€‹

<์˜๋ฏธ๋ก >SUM(X</ mi>,Y)=(55< /mn>ร—91)+(< /mo>37ร—60)+โ€ฆ+(88ร—30)< mrow>=26,926< /mn>\begin \\text(X, Y) &= (55 \times 91) + (37 \times 60) + \dotso + (88 \times 30) \&= 26,926 \\end< /math>

๋‹ค์Œ ๋‹จ๊ณ„๋Š” ๊ฐ X ๊ฐ’์„ ๊ฐ€์ ธ์™€์„œ ์ œ๊ณฑํ•˜๊ณ  ์ด ๋ชจ๋“  ๊ฐ’์„ ํ•ฉ์‚ฐํ•˜์—ฌ SUM(x2)์„ ์ฐพ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. Y ๊ฐ’์— ๋Œ€ํ•ด์„œ๋„ ๋™์ผํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

<์˜๋ฏธ๋ก >ํ•ฉ (X2)< /mo>=(552)+(3 72)+( 1002)+โ€ฆ+(88 2)=28,623\text(X2) = (552) + ( 372) + (1002) + \dotso + (88^2) = 28,623

<์˜๋ฏธ๋ก >ํ•ฉ (Y2)< /mo>=(912)+(6 02)+( 702)+โ€ฆ+(30 2)=35,971\text(Y2) = (912) + ( 602) + (702) + \dotso + (30^2) = 35,971(91<์ŠคํŒฌ class="vlist-r">2)+<์ŠคํŒฌ ํด๋ž˜์Šค ="base">(<์ŠคํŒฌ ํด๋ž˜์Šค ="mord">60< span class="vlist-r">2</s ํŒฌ>)+</ ์ŠคํŒฌ>(702< /span>)+< /sp >โ€ฆ+<span class="mspace" ์Šคํƒ€์ผ ="margin-right:0.22222222222222222em;"><span class="strut" ์Šคํƒ€์ผ="๋†’์ด:1.064108em;์ˆ˜์ง ์ •๋ ฌ:-0.25em; ">(30< /span>2)=35,97<์ŠคํŒฌ ํด๋ž˜์Šค ="mord">1

7๊ฐœ์˜ ๊ด€์ธก๊ฐ’ n์ด ์žˆ๋‹ค๋Š” ์ ์— ์œ ์˜ํ•˜๊ณ  ๋‹ค์Œ ๊ณต์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ๊ด€ ๊ณ„์ˆ˜ r: ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

<์˜๋ฏธ๋ก >r =[nร—<mo ์‹ ์ถ•์„ฑ ="false">(SUM(X,</ mo>Y)โˆ’(SUM</ mtext>(X)ร—(ํ•ฉ(Y)< mo stretchy="false">)][(nร—SUM(X2)โˆ’ํ•ฉ (X)2< mo stretchy="false">]ร—[nร—SUM(Y2)โˆ’SUM(Y)2)] r = \frac{[n \times (\text(X,Y) - (\text(X) \times ( \text(Y) ) ]} {\sqrt{[( n \times \text(X^2) - \text(X)2 ] \times [n \times \text(Y2) - \text(Y) ^2)]}}=< /span><span class="vlist" ์Šคํƒ€์ผ="๋†’์ด:1.01em;" ><์ŠคํŒฌ ํด๋ž˜์Šค ="mord mtight"><span class="vlist" ์Šคํƒ€์ผ="๋†’์ด :1.0369107142857144em;"><์ŠคํŒฌ ํด๋ž˜์Šค ="mord mtight" style="padding-left:1.19em;">[(nร—ํ•ฉ</ span>(<์ŠคํŒŒ n class="mord mtight">X< ์ŠคํŒฌ ํด๋ž˜์Šค="pstrut" ์Šคํƒ€์ผ="๋†’์ด:2.5em;">2)-< /span>ํ•ฉ(X)<span class="pstrut" ์Šคํƒ€์ผ="๊ทธ ight:2.5em;">2 ]ร—[nร—<์ŠคํŒฌ ํด๋ž˜์Šค ="mord mtight">SUM(Y<span class="vlist" ์Šคํƒ€์ผ ="๋†’์ด:0.7463142857142857em;"> 2)โˆ’SUM(Y) 2</ span>)] <svg width='400em' height='1.5428571428571431em' viewBox='0 0 spectre14080000 ๋ณด์กด ><๊ฒฝ๋กœ d='M95,702

c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14

c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54

c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10

s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429

c69,-144,104.5,-217.7,106.5,-221

l0 -0

c5.3,-9.3,12,-14,20,-14

H400000v40H845.2724

s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7

c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z

M834 80h400000v40h-400000z'/>โ€‹<span class="vlist" ์Šคํƒ€์ผ="๋†’์ด:0.4196607142857143em;"> [n</ span>ร—(ํ•ฉ (X,Y)โˆ’(ํ•ฉ(X )ร—(SUM(Y))]โ€‹

์ด ์˜ˆ์—์„œ ์ƒ๊ด€ ๊ด€๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค.

  • <์˜๋ฏธ๋ก > r=(7ร—26,926โˆ’(409ร—485))</ mrow>((7ร— 28,623โˆ’4092)ร—(</ mo>7ร—35,971 โˆ’4852)< mo stretchy="false">)r = \frac{(7 \times 26,926 - (409 \times 485))} {\sqrt{((7 \times 28,623 - 4092) \times (7 \times 35,971 - 4852))}}</ ์ฃผ์„>< span class="mopen nulldelimiter"><span class="vlist" ์Šคํƒ€์ผ="๋†’์ด:1.0369107142857144em;"><์ŠคํŒฌ class="svg-align" style="top:-3.428571428571429em;">((7ร—28,623< span class="mbin mtight">โˆ’40 9<span class="vlist" ์Šคํƒ€์ผ ="๋†’์ด:0.7463142857142857em;"> 2)ร—< /span>(7ร—35,971โˆ’4852)< ์ŠคํŒฌ ํด๋ž˜์Šค = "mc mtight ์†์‹ค">)<svg width='400em' height='1.5428571428571431em' viewBox='0 0 0 '410Rspectatio ๋ณด์กด ='xMinYMin ์Šฌ๋ผ์ด์Šค'><๊ฒฝ๋กœ d='M95,702

c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14

c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54

c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10

s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429

c69,-144,104.5,-217.7,106.5,-221

l0 -0

c5.3,-9.3,12,-14,20,-14

H400000v40H845.2724

s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7

c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z

M834 80h400000v40h-400000z'/>โ€‹<span class="vlist" ์Šคํƒ€์ผ="๋†’์ด:0.4196607142857143em;"> (7ร—26,926< span class="mbin mtight">โˆ’(4 09ร—48 5)) โ€‹</ ์ŠคํŒฌ>

  • <์˜๋ฏธ๋ก > r=9,883รท 23,414r = 9,883 \div 23,41423,4 14

  • <์˜๋ฏธ๋ก > r=โˆ’0.42<์ฃผ์„ ์ธ์ฝ”๋”ฉ="application/x-tex">r = -0.42< /์ฃผ์„>= โˆ’0.4 ">2

๋‘ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ƒ๊ด€ ๊ด€๊ณ„๋Š” -0.42์ด๋ฉฐ ์Œ์ˆ˜์ด๊ธฐ ๋•Œ๋ฌธ์— ์—ญ์ƒ๊ด€์ด๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค.

์—ญ์ƒ๊ด€์€ ๋ฌด์—‡์„ ๋งํ•ฉ๋‹ˆ๊นŒ?

์—ญ์ƒ๊ด€๊ด€๊ณ„๋Š” ํ•œ ๋ณ€์ˆ˜๊ฐ€ ๋†’์„ ๋•Œ ๋‹ค๋ฅธ ๋ณ€์ˆ˜๊ฐ€ ๋‚ฎ์€ ๊ฒฝํ–ฅ์ด ์žˆ์Œ์„ ์•Œ๋ ค์ค๋‹ˆ๋‹ค. ์ƒ๊ด€ ๋ถ„์„์€ ์ฃผ์‹๊ณผ ์ฑ„๊ถŒ ์‹œ์žฅ์ด ์ข…์ข… ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ์›€์ง์ด๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๋‘ ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„์— ๋Œ€ํ•œ ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ๋ฐํž ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค .

์ƒ๊ด€ ๊ณ„์ˆ˜๋Š” ์ข…์ข… ํฌํŠธํด๋ฆฌ์˜ค ๋‹ค๊ฐํ™”์˜ ์œ„ํ—˜ ๊ฐ์†Œ ์ด์  ๋ฐ ๊ธฐํƒ€ ์ค‘์š”ํ•œ ๋ฐ์ดํ„ฐ์™€ ๊ฐ™์€ ๋ฉ”ํŠธ๋ฆญ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋‘ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ž์‚ฐ์— ๋Œ€ํ•œ ์ˆ˜์ต์ด ์Œ์˜ ์ƒ๊ด€ ๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ ๋™์ผํ•œ ํฌํŠธํด๋ฆฌ์˜ค์— ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉด ์„œ๋กœ ๊ท ํ˜•์„ ์ด๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๊ธˆ์œต ์‹œ์žฅ์—์„œ ์—ญ์ƒ๊ด€๊ด€๊ณ„์˜ ์ž˜ ์•Œ๋ ค์ง„ ์˜ˆ๋Š” ์•„๋งˆ๋„ ๋ฏธ๊ตญ ๋‹ฌ๋Ÿฌ์™€ ๊ธˆ ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„์ผ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ ๋‹ฌ๋Ÿฌ๊ฐ€ ์ฃผ์š” ํ†ตํ™”์— ๋Œ€ํ•ด ์•ฝ์„ธ๋ฅผ ๋ณด์ด๋ฉด ์ผ๋ฐ˜์ ์œผ๋กœ ๊ธˆ์˜ ๋‹ฌ๋Ÿฌ ๊ฐ€๊ฒฉ์ด ์ƒ์Šนํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๊ด€์ฐฐ๋˜๋ฉฐ, ๋ฏธ๊ตญ ๋‹ฌ๋Ÿฌ๊ฐ€ ๊ฐ•์„ธ๋ฅผ ๋ณด์ด๋ฉด ๊ธˆ ๊ฐ€๊ฒฉ์ด ํ•˜๋ฝํ•ฉ๋‹ˆ๋‹ค.

์—ญ์ƒ๊ด€ ์‚ฌ์šฉ์˜ ํ•œ๊ณ„

์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„ ์™€ ๊ด€๋ จํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ์ ์„ ์—ผ๋‘์— ๋‘์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค . ์ฒซ์งธ, ๊ทธ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„ ๋˜๋Š” ์–‘ ์˜ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์กด์žฌ ํ•œ๋‹ค๊ณ  ํ•ด์„œ ๋ฐ˜๋“œ์‹œ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ์˜๋ฏธํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹™๋‹ˆ๋‹ค. ๋‘ ๋ณ€์ˆ˜๊ฐ€ ๋งค์šฐ ๊ฐ•ํ•œ ์—ญ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ–๊ณ  ์žˆ๋‹ค๊ณ  ํ•˜๋”๋ผ๋„ ์ด ๊ฒฐ๊ณผ ์ž์ฒด๋Š” ๋‘˜ ์‚ฌ์ด์˜ ์ธ๊ณผ๊ด€๊ณ„๋ฅผ ์ž…์ฆํ•˜์ง€ ๋ชปํ•ฉ๋‹ˆ๋‹ค.

๋‘˜์งธ, ๋Œ€๋ถ€๋ถ„์˜ ์žฌ๋ฌด ๋ฐ์ดํ„ฐ์™€ ๊ฐ™์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ ๋‘ ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋Š” ๊ณ ์ •์ ์ด์ง€ ์•Š์œผ๋ฉฐ ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ณ€์ˆ˜๊ฐ€ ์–ด๋–ค ๊ธฐ๊ฐ„์—๋Š” ์—ญ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ  ๋‹ค๋ฅธ ๊ธฐ๊ฐ„์—๋Š” ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ด ๋•Œ๋ฌธ์— ์ƒ๊ด€ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋™์ผํ•œ ๊ฒฐ๋ก ์„ ๋ฏธ๋ž˜ ๋ฐ์ดํ„ฐ์— ์™ธ์‚ฝํ•˜๋Š” ๊ฒƒ์€ ๋†’์€ ์ˆ˜์ค€์˜ ์œ„ํ—˜์„ ์ˆ˜๋ฐ˜ํ•ฉ๋‹ˆ๋‹ค.

ํ•˜์ด๋ผ์ดํŠธ

  • ์—ญ(๋˜๋Š” ์Œ์˜) ์ƒ๊ด€์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋‘ ๋ณ€์ˆ˜๊ฐ€ ๊ด€๋ จ๋˜์–ด ํ•˜๋‚˜๊ฐ€ ๋†’์œผ๋ฉด ๋‹ค๋ฅธ ๋ณ€์ˆ˜๊ฐ€ ๋‚ฎ์„ ๋•Œ์ž…๋‹ˆ๋‹ค.

  • ๋‘ ๋ณ€์ˆ˜๊ฐ€ ๊ฐ•ํ•œ ์Œ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์ง€๋งŒ ์ด๊ฒƒ์ด ๋ฐ˜๋“œ์‹œ ํ•œ ๋ณ€์ˆ˜์˜ ํ–‰๋™์ด ๋‹ค๋ฅธ ๋ณ€์ˆ˜์— ์ธ๊ณผ์  ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค.

  • ๋‘ ๋ณ€์ˆ˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋Š” ์‹œ๊ฐ„์ด ์ง€๋‚จ์— ๋”ฐ๋ผ ๋ณ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์–‘์˜ ์ƒ๊ด€ ๊ด€๊ณ„๊ฐ€ ์žˆ๋Š” ๊ธฐ๊ฐ„๋„ ์žˆ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.