Investor's wiki

Tasa de retorno ponderada en el tiempo - TWR

Tasa de retorno ponderada en el tiempo - TWR

¿Qué es la tasa de rendimiento ponderada en el tiempo (TWR)?

La tasa de rendimiento ponderada en el tiempo (TWR) es una medida de la tasa compuesta de crecimiento en una cartera. La medida TWR se usa a menudo para comparar los rendimientos de los administradores de inversiones porque elimina los efectos distorsionadores en las tasas de crecimiento creados por las entradas y salidas de dinero. El rendimiento ponderado en el tiempo divide el rendimiento de una cartera de inversiones en intervalos separados en función de si se agregó o retiró dinero del fondo.

La medida de rendimiento ponderado en el tiempo también se denomina rendimiento medio geométrico,. que es una forma complicada de establecer que los rendimientos de cada subperíodo se multiplican entre sí.

Fórmula para TWR

Utilice esta fórmula para determinar la tasa compuesta de crecimiento de las tenencias de su cartera.

<semántica> TWR =[(1+ HP1)×</ mo>(1+HP 2)××< mo stretchy="false">(1+HP n)] 1donde:< mtd>< mrow>TWR= Rentabilidad ponderada en el tiempo< /mrow>< mtd>n= Número de subperíodos< /mtext>< /mtd>HP=< /mo> Valor final(Valor inicial Valor+Flujo de caja) (En Valor inicial+Flujo de caja)</ mstyle>HPn= Retorno por subperíodo n< codificación de anotaciones="aplicación/x-tex">\begin&TWR = \left [(1 + HP_{1})\times(1 + HP_{2})\times\dots\times(1 + HP_) \right ] - 1\&\textbf\&TWR = \text\&n = \text{ Número de subperíodos}\ &amp;HP =\ \dfrac{\text - (\text + \text)}{(\text + \text)}\ &amp;HP_ = \text{ Retorno para el subperíodo }n\end TW R</ span>=[(1+HP< abarcan clase="mord mtight">1</ span>)×(</sp an>1+H< span class="mord">P2 )××(1+< span class="mord mathnormal" style="margin-right:0.08125em;">HP n​< /span>< /span>)] 1dónde: T< span class="mord mathnormal" style="margen-derecho :0.13889em;">WR= Rentabilidad ponderada en el tiempon = Número de subperíodosHP= (Valor inicial+ Flujo de caja)</ span>Valor final(Valor inicial+ Flujo de caja)</ span> HP n =< span class="mord text"> Retorno por subperíodo n

Cómo calcular TWR

  1. Calcule la tasa de rendimiento para cada subperíodo restando el saldo inicial del período del saldo final del período y dividiendo el resultado por el saldo inicial del período.

  2. Cree un nuevo subperíodo para cada período en el que haya un cambio en el flujo de efectivo, ya sea un retiro o depósito. Te quedarán varios períodos, cada uno con una tasa de rendimiento. Agregue 1 a cada tasa de rendimiento, lo que simplemente hace que los rendimientos negativos sean más fáciles de calcular.

  3. Multiplique la tasa de rendimiento de cada subperíodo entre sí. Restar el resultado por 1 para lograr el TWR.

¿Qué te dice TWR?

Puede ser difícil determinar cuánto dinero se ganó en una cartera cuando se realizan múltiples depósitos y retiros a lo largo del tiempo. Los inversores no pueden simplemente restar el saldo inicial, después del depósito inicial, del saldo final, ya que el saldo final refleja tanto la tasa de rendimiento de las inversiones como cualquier depósito o retiro durante el tiempo invertido en el fondo. En otras palabras, los depósitos y retiros distorsionan el valor del rendimiento de la cartera.

El rendimiento ponderado en el tiempo divide el rendimiento de una cartera de inversiones en intervalos separados en función de si se agregó o retiró dinero del fondo. La TWR proporciona la tasa de rendimiento para cada subperíodo o intervalo que tuvo cambios en el flujo de caja. Al aislar los rendimientos que tuvieron cambios en el flujo de efectivo, el resultado es más preciso que simplemente tomar el saldo inicial y el saldo final del tiempo invertido en un fondo. El rendimiento ponderado en el tiempo multiplica los rendimientos de cada subperíodo o período de tenencia, lo que los vincula y muestra cómo se componen los rendimientos a lo largo del tiempo.

Al calcular la tasa de rendimiento ponderada en el tiempo, se supone que todas las distribuciones de efectivo se reinvierten en la cartera. Las valoraciones diarias de la cartera son necesarias siempre que haya un flujo de caja externo,. como un depósito o un retiro, lo que indicaría el comienzo de un nuevo subperíodo. Además, los subperíodos deben ser los mismos para comparar los rendimientos de diferentes carteras o inversiones. Luego, estos períodos se vinculan geométricamente para determinar la tasa de rendimiento ponderada en el tiempo.

Debido a que los administradores de inversiones que negocian valores que cotizan en bolsa no suelen tener control sobre los flujos de efectivo de los inversionistas de fondos, la tasa de rendimiento ponderada en el tiempo es una medida de rendimiento popular para este tipo de fondos en contraposición a la tasa interna de rendimiento ( IRR,. por sus siglas en inglés). que es más sensible a los movimientos del flujo de caja.

Ejemplos de uso de TWR

Como se señaló, el rendimiento ponderado en el tiempo elimina los efectos de los flujos de efectivo de la cartera sobre los rendimientos. Para ver cómo funciona, considere los siguientes dos escenarios de inversores:

Escenario 1

El inversionista 1 invierte $1 millón en el Fondo mutuo A el 31 de diciembre. El 15 de agosto del año siguiente, su cartera está valuada en $1,162,484. En ese momento (15 de agosto), agregan $100,000 al Fondo mutuo A, lo que eleva el valor total a $1,262,484.

Al finalizar el año, la cartera ha disminuido en valor a $1,192,328. El rendimiento del período de tenencia para el primer período, del 31 de diciembre al 15 de agosto, se calcularía como:

  • Retorno = ($1,162,484 - $1,000,000) / $1,000,000 = 16.25%

El rendimiento del período de tenencia para el segundo período, del 15 de agosto al 31 de diciembre, se calcularía como:

  • Retorno = ($1,192,328 - ($1,162,484 + $100,000)) / ($1,162,484 + $100,000) = -5.56%

El segundo subperíodo se crea después del depósito de $100 000 para que la tasa de rendimiento se calcule reflejando ese depósito con su nuevo saldo inicial de $1 262 484 o ($1 162 484 + $100 000).

El rendimiento ponderado en el tiempo para los dos períodos de tiempo se calcula multiplicando la tasa de rendimiento de cada subperíodo entre sí. El primer período es el período previo al depósito y el segundo período es posterior al depósito de $100,000.

  • Retorno ponderado en el tiempo = (1 + 16,25 %) x (1 + (-5,56 %)) - 1 = 9,79 %

Escenario 2

El Inversionista 2 invierte $1 millón en el Fondo Mutuo A el 31 de diciembre. El 15 de agosto del año siguiente, su cartera está valuada en $1,162,484. En ese momento (15 de agosto), retiran $100 000 del fondo mutuo A, lo que reduce el valor total a $1 062 484.

Al finalizar el año, el valor de la cartera ha disminuido a $1,003,440. El rendimiento del período de tenencia para el primer período, del 31 de diciembre al 15 de agosto, se calcularía como:

  • Retorno = ($1,162,484 - $1,000,000) / $1,000,000 = 16.25%

El rendimiento del período de tenencia para el segundo período, del 15 de agosto al 31 de diciembre, se calcularía como:

  • Retorno = ($1,003,440 - ($1,162,484 - $100,000)) / ($1,162,484 - $100,000) = -5.56%

El rendimiento ponderado en el tiempo durante los dos períodos de tiempo se calcula multiplicando o vinculando geométricamente estos dos rendimientos:

  • Retorno ponderado en el tiempo = (1 + 16,25 %) x (1 + (-5,56 %)) - 1 = 9,79 %

Como era de esperar, ambos inversores recibieron el mismo rendimiento ponderado en el tiempo del 9,79 %, aunque uno añadió dinero y el otro lo retiró. La eliminación de los efectos del flujo de efectivo es precisamente la razón por la que el rendimiento ponderado en el tiempo es un concepto importante que permite a los inversores comparar los rendimientos de inversión de sus carteras y cualquier producto financiero.

Diferencia entre TWR y ROR

Una tasa de rendimiento (ROR) es la ganancia o pérdida neta de una inversión durante un período de tiempo específico, expresada como un porcentaje del costo inicial de la inversión. Las ganancias sobre inversiones se definen como los ingresos recibidos más cualquier ganancia de capital realizada en la venta de la inversión.

Sin embargo, el cálculo de la tasa de rendimiento no tiene en cuenta las diferencias de flujo de efectivo en la cartera, mientras que la TWR considera todos los depósitos y retiros para determinar la tasa de rendimiento.

Limitaciones de la TWR

Debido a los cambios en los flujos de efectivo que entran y salen de los fondos a diario, el TWR puede ser una forma extremadamente engorrosa de calcular y realizar un seguimiento de los flujos de efectivo. Es mejor usar una calculadora en línea o un software computacional. Otro cálculo de la tasa de rendimiento que se utiliza con frecuencia es la tasa de rendimiento ponderada por el dinero.

Reflejos

-El rendimiento ponderado en el tiempo (TWR) ayuda a eliminar los efectos distorsionadores en las tasas de crecimiento creados por las entradas y salidas de dinero.

  • El rendimiento ponderado en el tiempo (TWR) multiplica los rendimientos de cada subperíodo o período de tenencia, lo que los vincula y muestra cómo se componen los rendimientos a lo largo del tiempo.